Name and Surname Position

Edgars Sūna

Chair manager, professor
Kristaps Jaudzems Professor

Anda Prikšāne

Associate Professor
Jāzeps Logins Assistant to Professor
Artis Kinēns Associate Professor

Eduards Baķis

Principal Researcher

Rihards Klūga

Researcher
Nauris Narvaišs PhD student
Gļebs Jeršovs PhD student
Artūrs Mazarēvičs PhD student
Viktorija Vitkovska PhD student

Sustainable chemistry

Organocatalysis

A demand for enantiomerically pure molecules in pharmaceutical industry has promoted the development of numerous stereoselective synthesis methods. Among them, enantioselective catalysis is especially attractive as it creates an optically active product from an achiral starting material. Furthermore, catalytic processes features considerably reduced environmental footprint as opposed to stoichiometric reactions. Catalysis by simple organic molecules (organocatalysis) has developed at an astounding speed since 2000 owing to a relatively low cost and benign character of organocatalysts. We are interested in the development of chiral Lewis base catalysts capable of promoting stereoselective transformation with high levels of asymmetric induction. Specifically, we are engaged in the development of chiral 4-dimethylaminopyridine-derived catalysts for use in dynamic stereochemistry.

Selected publications:

Kluga, R.; Kinens, A.; Suna, E. "Chiral 4-MeO-Pyridine (MOPY) Catalyst for Enantioselective Cyclopropanation: Attenuation of Lewis Basicity Leads to Improved Catalytic Efficiency." Chem. Eur. J. 2024, e202301136, DOI: 10.1002/chem.202301136

Kinens, A.; Balkaitis, S.; Ahmad, O. K.; Piotrowski, D. W.; Suna, E. "Acylative Dynamic Kinetic Resolution of Secondary Alcohols: Tandem Catalysis by HyperBTM and Bäckvall’s Ruthenium Complex" J. Org. Chem. 2021, 86, 7189–7202. DOI: 10.1021/acs.joc.1c00545

Kinens, A.; Balkaitis, S.; Suna, E. "Preparative-Scale Synthesis of Vedejs Chiral DMAP Catalysts" J. Org. Chem. 2018, 83, 12449–12459. DOI: 10.1021/acs.joc.8b01687

 

Kinens, A.; Sejejs, M.; Kamlet, A. S.; Piotrowski, D. W.; Vedejs, E.; Suna, E. "Development of a Chiral DMAP Catalyst for the Dynamic Kinetic Resolution of Azole Hemiaminals" J. Org. Chem. 2017, 82, 869–886.DOI: 10.1021/acs.joc.6b02955

Organic electrosynthesis

Organic electrosynthesis is inherently environmentally benign and safe technique because it uses the electron as a redox agent rather than toxic or dangerous oxidising or reducing reagents as in traditional chemistry. The use of electrical current in the synthesis leads to improved atom efficiency, reduced energy consumption and costs.

We are interested in the application of organic electrosynthesis to access molecules that are difficult to synthesised by traditional synthesis.

Selected publications:

Koleda O., Prane K., Suna E. "Electrochemical Synthesis of Unnatural Amino Acids via Anodic Decarboxylation of N-Acetylamino Malonic Acid Derivatives" Org. Lett. 2023, DOI: 10.1021/acs.orglett.3c02687

Mohebbati, N.; Sokolovs, I.; Woite, P.; Lõkov, M.; Parman, E.; Ugandi, M.; Leito, I.; Roemelt, M.; Suna, E.; Francke, R. "Electrochemistry and Reactivity of Chelation-stabilized Hypervalent Bromine(III) Compounds" Chem.Eur. J. 2022, 28, e2022009. DOI: 10.1002/chem.202200974

Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R. "Synthesis of Benzoxazoles Using Electrochemically Generated Hypervalent Iodine" J. Org. Chem. 2017, 82, 11669–11681. DOI: 10.1021/acs.joc.7b01686

Sokolovs, I.; Mohebbati, N.; Francke, R.; Suna, E. "Electrochemical Generation of Hypervalent Bromine(III) Compounds" Angew. Chem. Int. Ed. 2021, 60, 15832–15837. DOI: 10.1002/anie.202104677

Targeted solvent design

Ionic liquids (ILs) are salts that melt at relatively low temperatures, often below 0 °C. Being ionic compounds, they are extremely non-volatile, but still fluid. Estimates suggest around one million of distinct ionic liquids can be obtained by combining various cations and anions. This paves the way for designing liquids that can serve a particular function, e.g., as solvents for certain type of organic transformations or as electrolytes for power storage and conversion.

In our lab, we combine the expertise on high quality custom-ionic liquid synthesis with a targeted structural IL advancement for enabling these unique materials to improve chemical processes' efficiency and sustainability. Our research is focused on understanding the underlying design principles for ionic liquids that would contribute to reaching the said goals by, e.g., improving the energy consumption of chemicals’ synthesis, improving the energy consumption of gas mixture separation, reducing the use of organic solvents, which are volatile organic compounds (VOCs), ensuring a non-flammable media for chemical transformations.

Selected publications:

Sloboda, D.; Weber, C. C.; Bakis, E. "A Kinetics Study of Copper-Catalysed Click Reactions in Ionic Liquids" Org. Biomol. Chem. 2023, 21, 7984–7993, DOI: 10.1039/D3OB00237C

Bakis, E.; Goloviznina, K.; Vaz, I. C. M.; Sloboda, D.; Hazens, D.; Valkovska, V.; Klimenkovs, I.; Padua, A.; Costa Gomes, M. "Unravelling Free Volume in Branched-Cation Ionic Liquids Based on Silicon" Chem. Sci. 2022, 13, 9062–9073, DOI: 10.1039/D2SC01696F

Bakis, E.; van den Bruinhorst, A.; Pison, L.; Palazzo, I.; Chang, T.; Kjellberg, M.; Weber, Cameron C.; Gomes, Margarida C.; Welton, T. "Mixing divalent ionic liquids: effects of charge and side-chains" Phys. Chem. Chem. Phys. 2021, 23, 4624-4635. DOI: 10.1039/D1CP00208B

Priede, E.; Brica, S.; Bakis, E.; Udris, N.; Zicmanis, A. "Ionic liquids as solvents for the Knoevenagel condensation: understanding the role of solvent–solute interactions" New J. Chem. 2015, 39, 9132–9142. DOI: 10.1039/C5NJ01906K

Biomolecular chemistry

Studies of therapeutic target proteins and biologically active substances - structures and interactions

Proteins perform most functions and catalyze all chemical reactions in living organisms. Their improper functioning is associated with the development of diseases. Studies of protein structures and interactions allow us to understand both their mechanisms of action and the possibilities for correcting their activities, which are essential for rational drug design. Our studies, in collaboration with the Latvian Institute of Organic Synthesis, are aimed at developing new biologically active substances by studying the structures of therapeutic target proteins and their interactions with natural and synthetic compounds.

Selected publications:

Bobiļeva, O.; Bobrovs, R.; Kaņepe, I.; Patetko, L.; Kalniņš, G.; Šišovs, M.; Bula, A.L.; Grīnberga, S.; Borodušķis, M.; Ramata-Stunda, A.; Rostoks, N.; Jirgensons, A.; Tārs, K.; Jaudzems K. "Potent SARS-CoV-2 mRNA Cap Methyltransferase Inhibitors by Bioisosteric Replacement of Methionine in SAM Cosubstrate" ACS Med. Chem. Lett. 2021, 12, 1102–1107. DOI: 10.1021/acsmedchemlett.1c00140

Fridmanis, J.; Otikovs, M.; Brangulis, K.; Tārs, K.; Jaudzems, K. "Solution NMR structure of Borrelia burgdorferi outer surface lipoprotein BBP28, a member of the mlp protein family" Proteins 2021, 89, 588–594. DOI: 10.1002/prot.26011

Jaudzems, K.; Kurbatska, V.; Jēkabsons, A.; Bobrovs, R.; Rudevica, Z.; Leonchiks, A. "Targeting Bacterial Sortase A with Covalent Inhibitors: 27 New Starting Points for Structure-Based Hit-to-Lead Optimization" ACS Infect. Dis. 2020, 6, 186-194. DOI: 10.1021/acsinfecdis.9b00265

Project tittle: Synthesis, Structure and Properties of Novel Silicon-based Ionic Liquids: Towards Targeted Solvent Engineering

Project number: 1.1.1.2/VIAA/3/19/549

Project partners:

Project implementation timeline: 01.02.2020. – 31.01.2023.
Project leader: Principal Researcher, Dr. Chem. Eduards Bakis

List of publications

Kluga, R.; Kinens, A.; Suna, E. "Chiral 4-MeO-Pyridine (MOPY) Catalyst for Enantioselective Cyclopropanation: Attenuation of Lewis Basicity Leads to Improved Catalytic Efficiency." Chem. Eur. J. 2024, e202301136, DOI: 10.1002/chem.202301136


Koleda O., Prane K., Suna E. "Electrochemical Synthesis of Unnatural Amino Acids via Anodic Decarboxylation of N-Acetylamino Malonic Acid Derivatives" Org. Lett. 2023, DOI: 10.1021/acs.orglett.3c02687


Mohebbati, N.; Sokolovs, I.; Woite, P.; Lõkov, M.; Parman, E.; Ugandi, M.; Leito, I.; Roemelt, M.; Suna, E.; Francke, R. "Electrochemistry and Reactivity of Chelation-stabilized Hypervalent Bromine(III) Compounds" Chem.Eur. J. 2022, 28, e2022009. DOI: 10.1002/chem.202200974


Bobiļeva, O.; Bobrovs, R.; Kaņepe, I.; Patetko, L.; Kalniņš, G.; Šišovs, M.; Bula, A.L.; Grīnberga, S.; Borodušķis, M.; Ramata-Stunda, A.; Rostoks, N.; Jirgensons, A.; Tārs, K.; Jaudzems K. "Potent SARS-CoV-2 mRNA Cap Methyltransferase Inhibitors by Bioisosteric Replacement of Methionine in SAM Cosubstrate" ACS Med. Chem. Lett. 2021, 12, 1102–1107. DOI: 10.1021/acsmedchemlett.1c00140


Fridmanis, J.; Otikovs, M.; Brangulis, K.; Tārs, K.; Jaudzems, K. "Solution NMR structure of Borrelia burgdorferi outer surface lipoprotein BBP28, a member of the mlp protein family" Proteins 2021, 89, 588–594. DOI: 10.1002/prot.26011


Brune, K. D.; Liekniņa, I.; Sutov, G.; Morris, A. R.; Jovicevic, D.; Kalniņš, G.; Kazāks, A.; Kluga, R.; Kastaljana, S.; Zajakina, A.; Jansons, J.; Skrastiņa, D.; Spunde, K.; Cohen, A. A.; Bjorkman, P. J.; Morris, H. R.; Suna, E.; Tārs, K. "N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone" ChemBioChem 2021, 22, 3199-3207. DOI: 10.1002/cbic.202100381


Sokolovs, I.; Mohebbati, N.; Francke, R.; Suna, E. "Electrochemical Generation of Hypervalent Bromine(III) Compounds" Angew. Chem. Int. Ed. 2021, 60, 15832–15837. DOI: 10.1002/anie.202104677


Gulbe, K.; Lugiņina, J.; Jansons, E.; Kinens, A.; Turks, M. "Metal-free glycosylation with glycosyl fluorides in liquid SO2Beilstein J. Org. Chem. 2021, 17, 964-976. DOI: 10.3762/bjoc.17.78


Kinens, A.; Balkaitis, S.; Ahmad, O. K.; Piotrowski, D. W.; Suna, E. "Acylative Dynamic Kinetic Resolution of Secondary Alcohols: Tandem Catalysis by HyperBTM and Bäckvall’s Ruthenium Complex" J. Org. Chem. 2021, 86, 7189–7202. DOI: 10.1021/acs.joc.1c00545


Bakis, E.; van den Bruinhorst, A.; Pison, L.; Palazzo, I.; Chang, T.; Kjellberg, M.; Weber, Cameron C.; Gomes, Margarida C.; Welton, T. "Mixing divalent ionic liquids: effects of charge and side-chains" Phys. Chem. Chem. Phys. 2021, 23, 4624-4635. DOI: 10.1039/D1CP00208B


Jaudzems, K.; Kurbatska, V.; Jēkabsons, A.; Bobrovs, R.; Rudevica, Z.; Leonchiks, A. "Targeting Bacterial Sortase A with Covalent Inhibitors: 27 New Starting Points for Structure-Based Hit-to-Lead Optimization" ACS Infect. Dis. 2020, 6, 186-194. DOI: 10.1021/acsinfecdis.9b00265


Kinens, A.; Balkaitis, S.; Suna, E. "Preparative-Scale Synthesis of Vedejs Chiral DMAP Catalysts" J. Org. Chem. 2018, 83, 12449–12459. DOI: 10.1021/acs.joc.8b01687


Kinens, A.; Sejejs, M.; Kamlet, A. S.; Piotrowski, D. W.; Vedejs, E.; Suna, E. "Development of a Chiral DMAP Catalyst for the Dynamic Kinetic Resolution of Azole Hemiaminals" J. Org. Chem. 2017, 82, 869–886. DOI: 10.1021/acs.joc.6b02955


Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R. "Synthesis of Benzoxazoles Using Electrochemically Generated Hypervalent Iodine" J. Org. Chem. 2017, 82, 11669–11681. DOI: 10.1021/acs.joc.7b01686


Priede, E.; Brica, S.; Bakis, E.; Udris, N.; Zicmanis, A. "Ionic liquids as solvents for the Knoevenagel condensation: understanding the role of solvent–solute interactions" New J. Chem. 2015, 39, 9132–9142. DOI: 10.1039/C5NJ01906K


Priede, E.; Bakis, E.; Zicmanis, A. "When Chlorides are the Most Reactive: A Simple Route towards Diverse Mono- and Dicationic Dimethyl Phosphate Ionic Liquids" Synlett. 2014, 17, 2447-2450. DOI: 10.1055/s-0034-1379018